B AAHL

Lesson Plan: Graphing Cubic Functions

Subject: Mathematics

Course: IB Mathematics Analysis and Approaches

Level: IB HL

Topic: Graphing Cubic Functions

Duration: 80 minutes

Learning Objective:

By the end of this lesson, students will be able to:

- o Understand the key features of cubic functions and their graphs.
- Explore the transformations of the basic cubic function $f(x) = x^3$.
- o Analyze and graph different forms of cubic functions, including factored forms.
- Use given points and intercepts to construct the equation of a cubic function.

Resources & Materials

- PowerPoint slides: "AAH2.12.8 Graphing cubic functions.pptx."
- Whiteboard / interactive board for note-taking and illustrating expansions.
- Student handouts (optional) with guiding questions and practice problems.
- **Graphing calculators** or other CAS (optional for verification).

1. Lesson Introduction (10 minutes)

Engagement – Inquiry Prompt:

Pose the following question to spark student thinking:

"What does the graph of a cubic function look like, and how can we tell what it will do just by looking at the equation?"

Prompts for small group discussion:

- What happens to $f(x) = x^3$ as $x \to \infty$ or $x \to -\infty$?
- What is the effect of multiplying the function by a positive or negative constant?
- What might change if we shift the function left, right, up, or down?

2. Exploring the Basic Cubic Graph (15 minutes)

- Students sketch $y = x^3$ by hand or using technology for values from x = -3 to 3.
- Discuss symmetry, shape, and end behaviour.
- Introduce transformations:
 - Vertical stretch/compression: $y = a \cdot x^3$
 - Horizontal/vertical shifts: $y = (x \pm b)^3 + c$
 - Reflections over axes

IB & Interactive Graphing with Technology – (20 minutes)

Students use a graphing calculator or software to investigate:

$$y = x^3$$

•
$$y = 2x^3$$
, $y = -x^3$, $y = (x - 2)^3$, $y = x^3 + 1$, etc.

Students record and describe the transformations in pairs.

Guiding Question: How does each coefficient or constant affect the shape and position of the graph?

4. Understanding Roots and Graph Shapes (15 minutes)

Explore different types of cubic graphs based on their factored form:

- Three distinct real roots
- One real double root and one single root
- Triple real root
- One real root, complex conjugate pair

Sketch examples for each and connect to algebraic structure.

5. Constructing a Cubic Function from a Graph (15 minutes)

Given intercepts and one point, students build a function:

Example: x-intercepts at -1, 2, and 4; point (0, -8)

Step-by-step guidance on forming f(x) = a(x+1)(x-2)(x-4) and solving for a.

6. Exit Ticket & Reflection (5 minutes)

Exit Ticket Prompts:

- What determines the shape of a cubic function's graph?
- How do we recognize transformations from the equation?
- What does the sign of the leading coefficient tell us?

Assessment & Differentiation

Assessment:

- Observation of graphing tasks
- Accuracy of descriptions and equations formed
- Exit ticket reflections

Differentiation:

- Support students with graph templates or pre-labeled points
- Challenge advanced learners with more abstract forms (e.g., complex roots)

