Student Name: Date: B AAHL

Section 1: Concept Exploration

1. Polynomial Classification

Identify whether each of the following expressions is a polynomial. If it is, state its degree and leading coefficient.

(a)
$$3x^4 - 5x^2 + 2$$

(b)
$$\frac{2}{x} + x^3 + 7$$

(c)
$$5x^2 + \sqrt{x} - 3$$

(d)
$$-2x^5 + 4x^3 - x + 6$$

Section 2: Operations with Polynomials

2. Adding and subtracting Polynomials

Perform the following operations and simplify your answers:

(a)
$$(2x^3 - 4x^2 + 5x - 3) + (x^3 + 2x^2 - 7x + 6)$$

(b)
$$(4x^4 - 3x^2 + 7) - (2x^4 + 5x^2 - 4x + 2)$$

3. Multiply Polynomials

Expand and simplify:

(a)
$$(x+2)(x-3)$$

(b)
$$(2x^2 + x - 4)(x - 5)$$

(c)
$$(x^3 - 2x + 4)(2x^2 + 3x - 5)$$

Section 3: Real-World Applications

4. Application in Motion

A ball is thrown into the air with a height modeled by the polynomial function: $h(x) = -2x^2 + 5x + 10$

- (a) What type of polynomial is this? State its degree and leading coefficient.
- (b) If another object follows a path given by $h_2(x) = -x^2 + 3x + 8$ find the sum $h(x) + h_2(x)$ and interpret its meaning.

5. Investment Growth Model

A company models its revenue growth with the polynomial function $R(x) = 3x^3 - 5x^2 + 2x + 7$

Another company has a revenue model: $S(x) = -2x^3 + 4x^2 - x + 5$

- (a) Find the combined revenue function R(x) + S(x).
- (b) What does the degree of the resulting polynomial tell us about long-term growth?

Section 4: Challenge Problems

6. Exploring Degree & Growth

- (a) If $P(x) = ax^n + ax^{n-1} + ... + k$ represents a polynomial, explain why multiplying two polynomials always results in a new polynomial.
- (b) Predict the degree of $P(x) \times Q(x)$.if P(x) has degree 4 and Q(x) has degree 3.

IB AAH7. Polynomial Puzzle

Given that P(x) is a polynomial such that $P(x) \times (x - 1) = x^4 - x^3 + 2x - 3$. Determine P(x) and verify your answer.

Reflection Question

8. Critical Thinking

In your own words, explain how the structure of a polynomial changes when performing different operations. How does this impact real-world problem-solving.

Bonus Inquiry Task

9. Create your own Problem

Think of a real-world scenario where polynomial operations would be useful (E.g. physics, economics, engineering). Write a problem involving polynomials and solve it.

Section 1: Concept Exploration

1. Polynomial Classification

- a) $3x^4 5x^2 + 2$
 - Polynomial
- Degree: 4
- Leading Coefficient: 3
- d) $-2x^5 + 4x^3 x + 6$
 - Polynomial
- Degree: 5
- Leading Coefficient: –2

Section 2: Operations with Polynomials

2. Adding and Subtracting Polynomials

a) Addition

$$(2x^3 - 4x^2 + 5x - 3) + (x^3 + 2x^2 - 7x + 6)$$

= $3x^3 - 2x^2 - 2x + 3$

b) Subtraction

$$(4x^4 - 3x^2 + 7) - (2x^4 + 5x^2 - 4x + 2)$$

= $2x^4 - 8x^2 + 4x + 5$

3. Multiplying Polynomials

a)
$$(x+2)(x-3) = x^2 - x - 6$$

b)
$$(2x^2 + x - 4)(x - 5) = 2x^3 - 9x^2 - 9x + 20$$

c)
$$(x^3 - 2x + 4)(2x^2 + 3x - 5) = 2x^5 + 3x^4 - 9x^3 + 2x^2 + 22x - 20$$

Section 3: Real-World Applications

4. Application in Motion

a) Height function:

$$h(x) = -2x^2 + 5x + 10$$

- Type: Quadratic Polynomial
- Degree: 2
- Leading Coefficient: -2

b) Combined height:

$$h(x) + h_2(x) = (-2x^2 + 5x + 10) + (-x^2 + 3x + 8) = -3x^2 + 8x + 18$$
 is the combined height

5. Investment Growth Model

(a) Combined revenue function:

$$R(x) + S(x) = (3x^3 - 5x^2 + 2x + 7) + (-2x^3 + 4x^2 - x + 5) = x^3 - x^2 + x + 12$$

b) Interpretation of degree:

The resulting polynomial has degree 3, indicating that in the long term, the cubic term dominates, leading to accelerated growth compared to lower-degree terms.

Section 4: Challenge Problems

6. Exploring Degree & Growth

- a) Why does the product of polynomials yield another polynomial? Because multiplying polynomials involves distributing and combining terms, all resulting terms remain in the form ax^n , which meets the definition of a polynomial.
- b) Degree of product $(P(x) \times Q(x))$:

If
$$deg(P) = 4$$
 and $deg(Q) = 3$, then $deg(PQ) = 7$

7. Polynomial Puzzle:

Given
$$P(x)(x-1) = x^4 - x + 2x - 3$$
,

Then

$$P(x) = \frac{x^4 - x^3 + 2x - 3}{x - 1}$$

This simplifies to the quotient of the polynomial division (can be performed via long division if needed).

d) Reflection:

The structure of a polynomial changes based on the operation:

- Addition/Subtraction: changes coefficients, preserves degree unless leading terms cancel.
- Multiplication: increases the degree and number of terms. This matters in real-world modeling because the degree influences growth rate and behavior over time.

