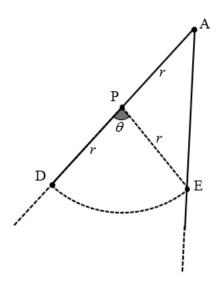
1.6.1 Simple deductive proof



Student name: _____

Score: _____

1. Two straight fences meet at Point A and a field lies between them.

A horse is tied to a Post, P, by a rope of length *r* metres. Point D is on one fence and point E is on the other, such that PD = PE = PA = r and $D\widehat{P}E = \theta$ radians. This is shown in the following diagram.

The length of the arc DE shown in the diagram is 32 m.

(a) Write down an expression for r in terms of θ .

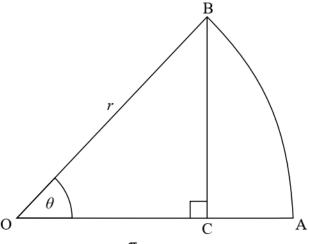
(b) Show that the area of the field that the horse can reach is $\frac{512}{\theta^2}(\theta + \sin \theta)$.

- 2. Consider the functions $f(x) = -(x h)^2 + 2k$ and $g(x) = e^{x-2} + k$ where $h, k \in \mathbb{R}$.
 - (a) Find f'(x).

The graphs of f and g have a common tangent at x = 3.

- (b) Show that $h = \frac{e+6}{2}$.
- (c) Hence, show that $k = e + \frac{e^2}{4}$.
- 3. Show that $\sin 2x + \cos 2x 1 = 2 \sin x (\cos x \sin x)$.

4. Let
$$y = \frac{\ln x}{x^4}$$
 for $x > 0$.


Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - 4\ln x}{x^5}$.

5. Consider two consecutive positive integers, n and n + 1.

Show that the difference of their squares is equal to the sum of the two integers.

6. OAB is a sector of the circle with centre O and radius *r*, as shown in the following diagram.

diagram not to scale

The angle AOB is θ radians, where $0 < \theta < \frac{\pi}{2}$.

The point C lies on OA and OA is perpendicular to BC.

Show that $OC = r \cos \theta$.

7. All living plants contain an isotope of carbon called carbon-14. When a plant dies, the isotope decays so that the amount of carbon-14 present in the remains of the plant decreases. The time since death of a plant can be determined by measuring the amount of carbon-14 still present in the remains.

The amount, A, of carbon-14 present in a plant t years after its death can be modelled by

 $A = A_0 e^{-kt}$ where $t \ge 0$ and A_0 , k are positive constants.

At the time of death, a plant is defined to have 100 units of carbon-14.

(a) Show that $A_0 = 100$

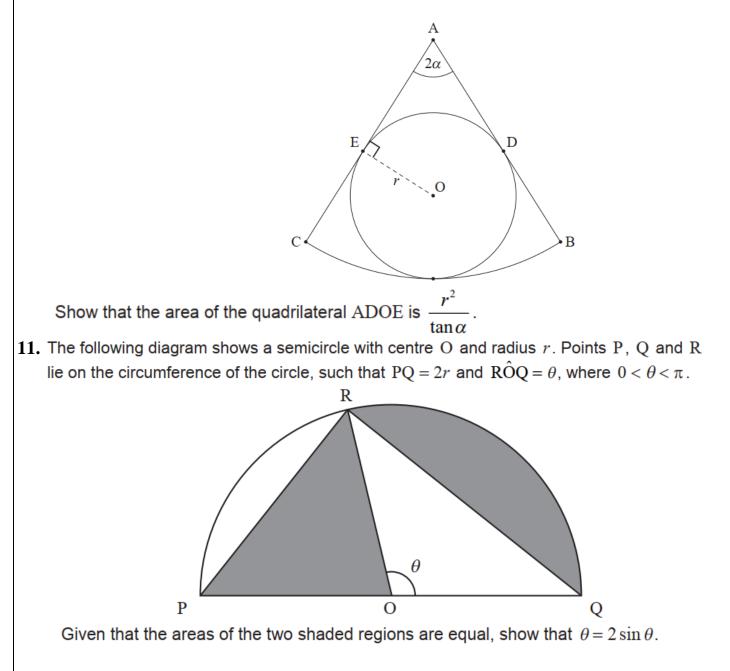
The time taken for half the original amount of carbon-14 to decay is known to be 5730 years.

(b) Show that $k = \frac{\ln 2}{5730}$

8. It is given that $\log_{ab} a = 3$, where $a, b \in \mathbb{R}^+$, $ab \neq 1$.

Show that $\log_{ab} b = -2$.

9. Consider the arithmetic sequence $\log_8 27$, $\log_8 p$, $\log_8 q$, $\log_8 125$, where p > 1 and q > 1.


Show that 27, p, q and 125 are four consecutive terms in a geometric sequence.

10. The following diagram shows a sector ABC of a circle with centre A. The angle $B\hat{A}C = 2\alpha$, where $0 < \alpha < \frac{\pi}{2}$, and $O\hat{E}A = \frac{\pi}{2}$.

A circle with centre O and radius r is inscribed in sector ABC.

AB and AC are both tangent to the circle at points D and E respectively.

diagram not to scale

12. Let a be a constant, where a > 1.

Show that
$$a^2 + \left(\frac{a^2 - 1}{2}\right)^2 = \left(\frac{a^2 + 1}{2}\right)^2$$
.

