Worksheet: Disproof by Counterexample and

Proof by Contrapositive

Name: _____

_____ Date: ____

Section 1: Disproof by Counterexample

Find a counterexample that disprove the following statements:

- 1: "For all integers n, $n^2 + n$ is divisible by 3."
- 2: "The product of two prime numbers is always odd."
- 3: "For all real numbers x, $|x| \ge x^2$."
- 4: "The square of any integer is always greater than or equal to the integer."
- 5: "The product of two even numbers is always divisible by 8."

Section 2: Proof by Contrapositive

Prove by constructing the contrapositive the following statements

- 1: If n^2 is even, then *n* is even.
- 2: If a product ab = 0, then either a = 0 or b = 0.
- 3: If a number is not divisible by 3, then its square is not divisible by 3.
- 4: If n^2 is divisible by 4, then *n* is even.
- 5: If a number is odd, then its square is also odd.

IB AAF

Section 1: Disproof by Counterexample

1: The statement "For all integers $n, n^2 + n$ is divisible by 3" is false.

Counterexample: Let n = 1. $n^2 + n = 1^2 + 1 = 2$, which is not divisible by 3.

2: The statement "The product of two prime numbers is always odd" is false.

Counterexample: 2 and 3 are prime numbers, but their product is 6, which is even.

3: The statement "For all real numbers x, $|x| \ge x^2$ " is false.

Counterexample: Let x = 0.5. Then |x| = 0.5, but $x^2 = 0.25$. Here, $|x| \le x^2$.

4: The statement "The square of any integer is always greater than or equal to the integer" is false.

Counterexample: Let n = 0. Then $n^2 = 0$, which equals n but does not satisfy the inequality.

5: The statement "The product of two even numbers is always divisible by 8" is false.

Counterexample: Let the numbers be 2 and 4. Their product is 8, which is divisible by 8. However, if we take 2 and 6, their product is 12, which is not divisible by 8.

Section 2: Proof by Contrapositive

1: Prove: If n^2 is even, then *n* is even.

Contrapositive: If *n* is odd, then n^2 is odd.

Proof: If *n* is odd, let n = 2k + 1 for some integer *k*.

Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$, which is odd.

Thus, the contrapositive is true, and the original statement is proven.

2: Prove: If ab = 0, then either a = 0 or b = 0.

Contrapositive: If $a \neq 0$ and $b \neq 0$, then $ab \neq 0$.

Proof: If $a \neq 0$ and $b \neq 0$, their product *ab* is not zero.

Hence, the contrapositive is true, and the original statement is proven.

3: Prove: If a number is not divisible by 3, then its square is not divisible by 3.

Contrapositive: If a number's square is divisible by 3, then the number is divisible by 3.

Proof: Let n^2 be divisible by 3. Then 3 | n^2 . Since 3 is a prime, it follows that 3 | n. Thus, the contrapositive is true, and the original statement is proven.

4: Prove: If n^2 is divisible by 4, then *n* is even.

Contrapositive: If *n* is odd, then n^2 is not divisible by 4.

Proof: If *n* is odd, let n = 2k + 1 for some integer *k*. Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$, which is not divisible by 4.

Thus, the contrapositive is true, and the original statement is proven.

5: Prove: If a number is odd, then its square is also odd.

Contrapositive: If a number's square is even, then the number is even.

Proof: If n^2 is even, then let n = 2k for some integer k.

The square of an even number is also even.

Thus, the contrapositive is true, and the original statement is proven.

