Name: _

IB AAHL

Question 1: Prove that for all integers n, $n^2 + n$ is always even.

Hint:

• Consider two cases: when *n* is even and when *n* is odd.

Question 2: Prove that a number is divisible by 5 if and only if its last digit is either 0 or 5.

Hint:

• Split the problem into cases based on the possible last digits of a number.

Question 3: Prove that the sum of the squares of any two consecutive integers is always odd.

Hint:

• Let the two consecutive integers be *n* and *n* + 1 and consider separate cases for when *n* is even and when *n* is odd.

Question 4: Prove that the product of any three consecutive integers is divisible by 6.

Hint:

• Analyse the product of n, n + 1, and n + 2 in cases when n is divisible by 2 or 3.

Question 5: Prove that for any integer n, $n^3 - n$ is divisible by 6.

Hint:

• Factor the expression $n^3 - n$, then analyse the resulting product.

Question 6: Prove that for all integers n, $n^2 + 3n$ is divisible by 2.

Hint:

• Consider two cases: when *n* is even and when *n* is odd.

Question 7: Prove that a number is divisible by 4 if and only if its last two digits are divisible by 4.

Hint:

• Express the number as n = 100k + bn = 100k + bn = 100k + b, where *b* represents the last two digits.

Question 8: Prove that the product of any four consecutive integers is divisible by 24. Hint:

• Factor the product n(n + 1)(n + 2)(n + 3) and analyze cases when *n* is divisible by 2 or 3.

Z IB AAHL

Question 9: Prove that if *n* is a prime number greater than 3, then $n^2 - 1$ is divisible by 24.

Hint:

• Factor $n^2 - 1$ as (n - 1)(n + 1), and analyse the properties of three consecutive integers.

Question 10: Prove that for any positive integer n, $n^5 - n$ is divisible by 5.

Hint:

• Factor the expression $n^5 - n$ and analyze the resulting product.

Solutions

IB AAHL

Solution 1: We are asked to prove that $n^2 + n$ is always even.

Step 1: Consider the case when *n* is even.

- Let n = 2k, where k is an integer.
- Then $n^2 + n = (2k)^2 + 2k = 4k^2 + 2k = 2(2k^2 + k)$, which is even.

Step 2: Consider the case when *n* is odd.

- Let n = 2k + 1, where k is an integer.
- Then $n^2 + n = (2k + 1)^2 + (2k + 1) = 4k^2 + 4k + 1 + 2k + 1 = 2(2k^2 + 3k + 1)$, which is even.

Thus, $n^2 + n$ is always even.

Solution 2:

We are asked to prove that a number is divisible by 5 if and only if its last digit is either 0 or 5.

Step 1: Consider the last digit of the number.

- A number *n* can be written as n = 10k + d, where *d* is the last digit.
- *n* is divisible by 5 if $10k + d \equiv 0 \mod 5$.

Step 2: Analyze the possible values for *d* (the last digit).

- The possible values of *d* are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
- Only when d = 0 or d = 5, $10k + d \equiv 0 \mod 5$.

Thus, a number is divisible by 5 if and only if its last digit is 0 or 5.

Solution 3:

We are asked to prove that the sum of the squares of two consecutive integers is always odd.

Step 1: Consider the case when nnn is even.

- Let n = 2k, where k is an integer.
- Then the consecutive integers are n = 2k and n + 1 = 2k + 1.
- Their squares are $n^2 = 4k^2$ and $(n + 1)^2 = 4k^2 + 4k + 1$.
- Therefore, $n^2 + (n+1)^2 = 4k^2 + 4k^2 + 4k + 1 = 8k^2 + 4k + 1$, which is odd.

Step 2: Consider the case when *n* is odd.

- Let n = 2k + 1, where k is an integer.
- Then the consecutive integers are n = 2k + 1 and n + 1 = 2k + 2.
- Their squares are $n^2 = 4k^2 + 4k + 1$ and $(n + 1)^2 = 4k^2 + 8k + 4$.
- Therefore, $n^2 + (n+1)^2 = 4k^2 + 4k + 1 + 4k^2 + 8k + 4 = 8k^2 + 12k + 5$, which is odd.

Thus, the sum of the squares of two consecutive integers is always odd.

Solution 4:

We are asked to prove that the product of any three consecutive integers is divisible by 6.

Step 1: Consider the product n(n + 1)(n + 2).

• Among three consecutive integers, one is divisible by 2 and one is divisible by 3.

Step 2: Analyze two cases:

- Case 1: *n* is divisible by 2.
 - Then *n* is divisible by 2, and among n, n + 1, and n + 2, one must be divisible by 3.
- Case 2: *n* is not divisible by 2.
 - If *n* is odd, then n + is divisible by 2, and again one of the three integers is divisible by 3.

Thus, the product of three consecutive integers is always divisible by 6.

Solution 5:

We are asked to prove that for any integer n, n3 - n is divisible by 6.

Step 1: Factor $n^3 - n$ **.**

• We can factor the expression as $n^3 - n = n(n-1)(n+1)$, which is the product of three consecutive integers.

Step 2: Prove divisibility by 6.

• As shown in Solution 4, the product of any three consecutive integers is divisible by 6.

Thus, $n^3 - n$ is divisible by 6 for any integer *n*.

Solution 6:

We are asked to prove that for all integers n, $n^2 + 3n$ is divisible by 2.

Step 1: Consider the case when *n* is even.

- Let n = 2k, where k is an integer.
- Then $n^2 + 3n = (2k)^2 + 3(2k) = 4k^2 + 6k = 2(2k^2 + 3k)$, which is divisible by 2.

Step 2: Consider the case when *n* is odd.

- Let n = 2k + 1, where k is an integer.
- Then $n^2 + 3n = (2k + 1)^2 + 3(2k + 1) = 4k^2 + 4k + 1 + 6k + 3 = 2(2k^2 + 5k + 2)$, which is divisible by 2.

Thus, $n^2 + 3n$ is divisible by 2 for all integers *n*.

Solution 7:

We are asked to prove that a number is divisible by 4 if and only if its last two digits are divisible by 4.

Step 1: Express the number as n = 100k + b, where *b* represents the last two digits.

- $n \equiv b \mod 4$ since $100k \equiv 0 \mod 4$.
- So, the divisibility of *n* by 4 depends only on *b*.

Step 2: Analyze the possible values of *b*.

- If *b* is divisible by 4, then n = 100k + b is divisible by 4.
- Conversely, if *n* is divisible by 4, *b* must also be divisible by 4 since $n \equiv b \mod 4$.

Thus, a number is divisible by 4 if and only if its last two digits are divisible by 4.

Solution 8:

We are asked to prove that the product of any four consecutive integers is divisible by 24.

Step 1: Let the four consecutive integers be n, n + 1, n + 2, and n + 3.

Step 2: Consider cases based on *n* mod 2 and *n* mod 3:

- Among the four consecutive integers, one must be divisible by 2, one must be divisible by 4, and one must be divisible by 3.
- Therefore, the product n(n + 1)(n + 2)(n + 3) is divisible by both 4 and 6, and hence divisible by 24.

Thus, the product of any four consecutive integers is divisible by 24.

Solution 9:

We are asked to prove that if *n* is a prime number greater than 3, then $n^2 - 1$ is divisible by 24.

Step 1: Factor $n^2 - 1$ as (n-1)(n+1).

• This is the product of two consecutive even numbers.

Step 2: Analyze the properties of three consecutive integers n - 1, n, and n + 1.

- One of n 1 or n + 1 is divisible by 4, and one of them is divisible by 2.
- Since *n* is prime and greater than 3, *n* is odd, so n 1 and n + 1 are both divisible by 2.
- Additionally, one of these numbers is divisible by 3.

Thus, $n^2 - 1$ is divisible by 24 for any prime number n > 3.

Solution 10:

We are asked to prove that for any positive integer n, $n^5 - n$ is divisible by 5.

Step 1: Factor $n^5 - n$.

• We can factor $n^5 - n = n(n^4 - 1) = n(n - 1)(n + 1)(n^2 + 1)$.

Step 2: Analyze the product.

• Among n, n-1, and n + 1, one of these integers must be divisible by 5.

Thus, $n^5 - n$ is divisible by 5 for any positive integer *n*.

