Name: Date:

IB AAHL

Question 1: Prove that a number n is divisible by 4 if and only if the last two digits of n are divisible by 4.

Hint:

• Consider representing the number n as 100a + b, where a is the part without the last two digits and b represents the last two digits.

Question 2: Prove that an integer n is odd if and only if n^2 is odd.

Hint:

- Prove both directions:
 - o n is odd implies n^2 is odd.
 - o n^2 is odd implies n is odd.

Question 3: Prove that $a^2 - b^2 = (a - b)(a + b)$ if and only if $a^2 - b^2 = 0$ implies a = b.

Hint:

• Use the factorization $a^2 - b^2 = (a - b)(a + b)$ to show both directions.

Question 4: Prove that the sum of the squares of two consecutive integers is always odd if and only if the smaller integer is odd.

Hint:

• Represent the two consecutive integers as n and n + 1 and prove both directions.

Question 5: Prove that for any real number x, $x^2 + 2x + 1 = 0$ if and only if x = -1.

Hint:

• Factor the quadratic and solve both directions.

Question 6: Prove that for any integer n, n(n + 1) is even if and only if n(n + 1) (n + 2) is divisible by 3.

Hint:

• Factor the expressions and consider the properties of consecutive integers.

Solutions

Solution 1:

Let n = 100a + b, where b represents the last two digits of n.

Step 1: Prove *n* divisible by $4 \implies$ last two digits divisible by 4.

- n = 100a + b, and $100 \equiv 0 \mod 4$. Therefore, $n \equiv b \mod 4$.
- If *n* is divisible by 4, then *b* must be divisible by 4.

Step 2: Prove last two digits divisible by $4 \implies n$ divisible by 4.

• If b is divisible by 4, then $n = 100a + b \equiv 0 \mod 4$, so n is divisible by 4.

Solution 2:

Let n be an integer.

Step 1: Prove *n* is odd \implies n^2 is odd.

- If *n* is odd, n = 2k + 1 for some integer *k*.
- Then $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, which is odd.

Step 2: Prove n^2 is odd $\implies n$ is odd.

• Suppose n^2 is odd. If n were even, say n = 2k, then $n^2 = (2k)^2 = 4k^2$, which is even. Hence, n must be odd.

Solution 3:

We know that $a^2 - b^2 = (a - b)(a + b)$.

Step 1: Prove $a^2 - b^2 = 0 \implies a = b$.

- If $a^2 b^2 = 0$, then (a b)(a + b) = 0.
- Therefore, either a b = 0 or a + b = 0. The first gives a = b, and the second gives a = -b, which is not possible unless a = b.

Step 2: Prove $a = b \implies a^2 - b^2 = 0$.

• If a = b, then $a^2 - b^2 = a^2 - a^2 = 0$.

Solution 4:

Let the two consecutive integers be n and n + 1.

Step 1: Prove sum of squares is odd \Rightarrow smaller integer is odd.

- The sum of squares is $n^2 + (n+1)^2 = 2n^2 + 2n + 1$.
- For the sum to be odd, $2n^2 + 2n$ must be even, meaning n(n + 1) is even. Thus, n must be odd.

Step 2: Prove smaller integer is odd \implies sum of squares is odd.

• If n is odd, then n^2 is odd and $(n + 1)^2$ is even. Therefore, $n^2 + (n + 1)^2$ is odd.

Solution 5:

We are given the equation $x^2 + 2x + 1 = 0$.

Step 1: Prove $x = -1 \implies x^2 + 2x + 1 = 0$.

• If x = -1, then $(-1)^2 + 2(-1) + 1 = 1 - 2 + 1 = 0$.

Step 2: Prove $x^2 + 2x + 1 = 0 \implies x = -1$.

- Factor the quadratic: $x^2 + 2x + 1 = (x + 1)^2 = 0$.
- Therefore, x = -1.

Solution 6:

Let n be an integer.

Step 1: Prove n(n + 1) is even $\implies n(n + 1) (n + 2)$ divisible by 3.

• If n(n + 1) is even, then one of the numbers is divisible by 2. In the product n(n + 1) (n + 2), one of the factors is divisible by 3, so the product is divisible by 6.

Step 2: Prove n(n + 1) (n + 2) divisible by $3 \implies n(n + 1)$ is even.

• If n(n+1)(n+2)n(n+1)(n+2)n(n+1)(n+2) is divisible by 3, then n(n+1)n(n+1)n(n+1) is divisible by 2, so the product is even.

B AAHL