B AAHL

## **Lesson Plan: Proof by Equivalence**

Subject: Mathematics

**Course:** IB Mathematics Analysis and Approaches

Level: IB HL

**Topic:** Proof by Equivalence

**Duration:** 60 minutes

## **Lesson Objectives**

By the end of the lesson, students will be able to:

- 1. Understand the concept of proof by equivalence (biconditional proof).
- 2. Construct and prove logical equivalence between two mathematical statements.
- 3. Apply proof by equivalence to various algebraic and geometric problems.

#### Resources

- PowerPoint presentation uploaded (as a guide for the lesson flow).
- Worksheets with exercises.

#### **Lesson Outline**

#### 1. Introduction (10 minutes)

- **Ask**: Begin by asking students, "What does it mean for two statements to be logically equivalent? Can you think of a situation where proving both directions of an implication is necessary?"
- **Explain**: Introduce the concept of proof by equivalence, or biconditional proof, where we need to prove both directions:
  - $\circ$  A  $\Rightarrow$  B
  - $\circ$  B  $\Rightarrow$  A

Emphasize that this proof method is used to show that two mathematical statements are logically equivalent  $(A \Leftrightarrow B)$ .

• **Provide the Goal**: Share the learning objective: "To understand and use proof by equivalence."

# 2. Guided Practice (20 minutes)

- Example 1: Prove that for any integer n,  $n^2$  is divisible by 4 if and only if n is even.
- Step 1: Prove *n* is even  $\Rightarrow n^2$  is divisible by 4:
  - Let n = 2k, where k is an integer.
  - o  $n^2 = (2k)^2 = 4k^2$ , which is divisible by 4.
- Step 2: Prove  $n^2$  is divisible by  $4 \Rightarrow n$  is even:
  - Suppose  $n^2$  is divisible by 4.
  - o If n were odd, say n = 2k + 1, then  $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$ , which is not divisible by 4.
  - $\circ$  Therefore, *n* must be even.



#### IB AA

- **Conclusion:**  $n^2$  is divisible by  $4 \Leftrightarrow n$  is even.
- Ask students to summarize the structure: prove both directions to complete the biconditional proof.
- **Example 2:** Prove a + b = 0 if and only if a = -b.
- Step 1: Prove  $a + b = 0 \Rightarrow a = -b$ .
  - Assume a + b = 0. Subtract b from both sides to get a = -b.
- Step 2: Prove  $a = -b \Rightarrow a + b = 0$ .
  - Assume a = -b. Substitute into the equation to get a + b = -b + b = 0.
- Conclusion:  $a + b = 0 \Leftrightarrow a = -b$ .
- Have students summarize how the reasoning works for proving both directions.

## 3. Independent Practice (15 minutes)

## **Collaborative Problem-Solving**

- Provide a series of problems on a worksheet, including:
  - 1. Linear factors.
  - 2. Repeated factors.
  - 3. Mixed factors.

## **Steps:**

- Students attempt problems in pairs.
- **Support**: Walk around and help students who may be struggling with the concept of proving both directions. or clarify doubts.

# 4. Discussion and Consolidation (10 minutes)

- **Review**: Go over the problems together, ensuring students understand how to prove both directions of an equivalence.
- **Reinforce**: Emphasize the importance of maintaining logical flow in each direction and avoiding errors like circular reasoning or oversimplifying.
- **Summary**: Recap the method for proof by equivalence: Prove both  $A \Rightarrow B$  and  $B \Rightarrow A$  to establish  $A \Leftrightarrow B$ .



#### IB AAHL

# 5. Quick Quiz (5 minutes)

To assess student understanding, give them a brief quiz:

- 1. Prove  $a^2 = b^2$  if and only if a = b or a = -b.
- 2. Prove  $x^2 + 1 = 0$  has no real solutions.
- **3.** Prove that for any integer n,  $n^2$  is divisible by 4 if and only if n is even.

### Homework/Extension

• Finish any incomplete worksheet problems.

