Proof by deduction

1. Prove that the product of two even numbers is always even.

2. Prove by deduction that if 7 is odd, then n? is also odd.

3. Prove that if @ and b are real numbers such that a + b =0, then a = —b.
4. Prove thatif x> —5x+ 6 =0, then x =2 or x = 3.

5. Prove that the sum of three consecutive integers is divisible by 3.

6. Prove that for any integer n, n’

— n 1s always divisible by 6.
7. Prove that for any integer n, n* — n? is divisible by 12.
8. Prove that the sum of the squares of two consecutive integers is always odd.

9. Prove that if n is a positive integer, then n° — n is divisible by 5

10. The product of three consecutive integers is increased by the middle integer. Prove

that the result is a perfect cube.
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Proof by deduction
ANSWERS
Proof by deduction
. Prove that the product of two even numbers is always even.
Let the two even numbers be 2a and 2b, where a and b are integers.
(2a) x (2b) = 4ab = 2(2ab). Since 2ab is an integer, the product is even.
. Prove by deduction that if n is odd, then n? is also odd.
Let n =2k + 1 (an odd number).
Then: n? = 2k + 1)* = 4k* + 4k + 1
=2(2k* + 2k) + 1.
Since 2k* + 2k is an integer, n* is odd.
. Prove that if @ and b are real numbers such that a + b =0, then a = —b.
We are given a + b = 0. To isolate a, subtract b from both sides: a = —b.
. Prove that if x> — 5x + 6 =0, then x = 2 or x = 3.
The quadratic equation is x> — 5x + 6 = 0.
Factorizing: x> = 5x+ 6 = (x —2)(x — 3) = 0.
Therefore, x =2 orx =3
. Prove that the sum of three consecutive integers is divisible by 3.
Let the three consecutive integers be n, n+1, and n+2.
n+m+l)+n+2)=3n+3
= 3(n+1).
Since n+1 is an integer, the sum is divisible by 3
. Prove that for any integer n, n® — n is always divisible by 6.
Factorn®*—n:n*—n=nm*>-1)=nn—Dn+1).

The product n(n — 1)(n + 1) represents three consecutive integers, one of which is
divisible by 2 and another by 3. Therefore, n(n — 1)(n + 1) is divisible by 6.

. Prove that for any integer n, n* — n? is divisible by 12.
We factor n* —n? as n>(n — 1)(n + 1). Since n — 1, n, and n + 1 are consecutive
integers, one is divisible by 2 and another by 3. At least one is divisible by 4, so the

product is divisible by 12.
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8. Prove that the sum of the squares of two consecutive integers is alwéys"o _
Let the two consecutive integers be n and n+1.
Then n? + (n+1)> = 2n> + 2n + 1, which is odd since 2n* + 2n is even.

9. Prove that if n is a positive integer, then n° — n is divisible by 5

We factorn’ —nasn(n*— 1) =n(n—1)(n + 1)(n*+1). Sincen,n— 1, and n + 1 are
consecutive integers, one is divisible by 5, so n° — n is divisible by 5.

10. The product of three consecutive integers is increased by the middle integer. Prove

that the result is a perfect cube.

Let the middle number be .

the product of the three consecutive integers, increased by the middle integer

(z—Dz(z+1)+z=(@°—-2z)(z+1)+z
=23+’ —-2*—-z+z

= 2% which is a perfect cube.
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