B AAHL

1. Decompose:

$$\frac{5x+3}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$

• Multiply through by (x+1)(x+2):

$$5x + 3 = A(x + 2) + B(x + 1)$$

· Expand and group terms:

$$5x + 3 = Ax + 2A + Bx + B \quad \Rightarrow \quad (A+B)x + (2A+B)$$

· Equate coefficients:

$$A + B = 5$$
, $2A + B = 3$

• Solve: A = -2, B = 7

Final Answer:

$$\frac{5x+3}{(x+1)(x+2)} = \frac{2}{x+1} + \frac{3}{x+2}$$

2. Decompose:

$$\frac{7x - 7}{(x - 3)(x + 4)} = \frac{A}{x - 3} + \frac{B}{x + 4}$$

• Multiply through by (x-3)(x+4):

$$7x - 7 = A(x+4) + B(x-3)$$

· Expand and group terms:

$$7x - 7 = Ax + 4A + Bx - 3B \implies (A + B)x + (4A - 3B)$$

· Equate coefficients:

$$A + B = 7$$
, $4A - 3B = -7$

• Solve: A = 2, B = 5.

Final Answer:

$$\frac{7x-7}{(x-3)(x+4)} = \frac{2}{x-3} + \frac{5}{x+4}$$

3. Decompose:

$$\frac{4x+5}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$$

• Multiply through by (x+2)(x-1):

$$4x + 5 = A(x - 1) + B(x + 2)$$

Expand and group terms:

$$4x + 5 = Ax - A + Bx + 2B$$
 \Rightarrow $(A+B)x + (-A+2B)$

· Equate coefficients:

$$A + B = 4$$
, $-A + 2B = 5$

• Solve: A = 1, B = 3.

Final Answer:

$$\frac{4x+5}{(x+2)(x-1)} = \frac{1}{x+2} + \frac{3}{x-1}$$

Section B: Repeated Factors

IB AAHL

4. Decompose:

$$\frac{2x+3}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}$$

• Multiply through by $(x+1)^2$:

$$2x + 3 = A(x + 1) + B$$

• Expand:

$$2x + 3 = Ax + A + B \quad \Rightarrow \quad Ax + (A + B)$$

· Equate coefficients:

$$A=2$$
, $A+B=3$

- Solve: A = 2, B = 1.
- Final Answer:

$$\frac{2x+3}{(x+1)^2} = \frac{2}{x+1} + \frac{1}{(x+1)^2}$$

5. Decompose:

$$\frac{6x+4}{(x-2)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2}$$

• Multiply through by $(x-2)^2$:

$$6x + 4 = A(x - 2) + B$$

· Expand:

$$6x + 4 = Ax - 2A + B \Rightarrow Ax + (-2A + B)$$

· Equate coefficients:

$$A = 6$$
, $-2A + B = 4$

- Solve: A = 6, B = 16.
- Final Answer:

$$\frac{6x+4}{(x-2)^2} = \frac{6}{x-2} + \frac{16}{(x-2)^2}$$

6. Decompose:

$$\frac{3x+7}{(x+3)^2} = \frac{A}{x+3} + \frac{B}{(x+3)^2}$$

• Multiply through by $(x+3)^2$:

$$3x + 7 = A(x+3) + B$$

Expand:

$$3x + 7 = Ax + 3A + B \Rightarrow Ax + (3A + B)$$

· Equate coefficients:

$$A = 3$$
, $3A + B = 7$

- Solve: A = 3, B = -2.
- Final Answer:

$$\frac{3x+7}{(x+3)^2} = \frac{3}{x+3} - \frac{2}{(x+3)^2}$$

Section C: Mixed Factors (Linear and Repeated)

7. Decompose:

$$\frac{4x^2 + 2x + 6}{(x+2)(x-1)^2} = \frac{A}{x+2} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

• Multiply through by $(x+2)(x-1)^2$:

$$4x^2 + 2x + 6 = A(x-1)^2 + B(x+2)(x-1) + C(x+2)$$

• Expand:

$$A(x-1)^2 = A(x^2-2x+1) = Ax^2-2Ax+A$$
 $B(x+2)(x-1) = B(x^2+x-2) = Bx^2+Bx-2B$ $C(x+2) = Cx+2C$

Combine terms:

$$4x^2 + 2x + 6 = (A+B)x^2 + (-2A+B+C)x + (A-2B+2C)$$

• Equate coefficients:

$$A + B = 4$$
, $-2A + B + C = 2$ $A - 2B + 2C = 6$

- Solve: A = 2, B = 2, C = 4.
- Final Answer:

$$\frac{4x^2 + 2x + 6}{(x+2)(x-1)^2} = \frac{2}{x+2} + \frac{2}{x-1} + \frac{4}{(x-1)^2}$$

8. Decompose:

$$\frac{2x^2 + 10x}{(x-3)(x+1)^2} = \frac{A}{x-3} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$$

• Multiply through by $(x-3)(x+1)^2$:

$$2x^{2} + 10x = A(x+1)^{2} + B(x-3)(x+1) + C(x-3)$$

- · Expand terms and combine coefficients, following similar steps as in Question 7.
- Solving gives: A = 3, B = -1, C = 2
- Final Answer:

$$\frac{2x^2 + 10x}{(x-3)(x+1)^2} = \frac{3}{x-3} - \frac{1}{x+1} + \frac{2}{(x+1)^2}$$

Section D: Irreducible Quadratic Factors

9. Decompose:

$$\frac{3x^2+4x+2}{(x+1)(x^2+2x+2)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2x+2}$$

• Multiply through by $(x+1)(x^2+2x+2)$:

$$3x^2 + 4x + 2 = A(x^2 + 2x + 2) + (Bx + C)(x + 1)$$

• Expand:

$$A(x^2 + 2x + 2) = Ax^2 + 2Ax + 2A$$

$$(Bx + C)(x + 1) = Bx^{2} + Bx + Cx + C = Bx^{2} + (B + C)x + C$$

Equate coefficients:

$$A + B = 3$$
, $2A + B + C = 4$, $2A + C = 2$

- Solve: A = 1, B = 2, C = 0.
- Final Answer:

$$\frac{3x^2+4x+2}{(x+1)(x^2+2x+2)} = \frac{1}{x+1} + \frac{2x}{x^2+2x+2}$$

IB AAH

$$\frac{5x^2 + 7x + 3}{(x - 1)(x^2 + x + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 1}$$

• Multiply through by $(x-1)(x^2+x+1)$:

$$5x^2 + 7x + 3 = A(x^2 + x + 1) + (Bx + C)(x - 1)$$

• Expand and combine coefficients:

$$A(x^2 + x + 1) = Ax^2 + Ax + A$$

$$(Bx + C)(x - 1) = Bx^{2} - Bx + Cx - C = Bx^{2} + (C - B)x - C$$

Equate coefficients:

$$A + B = 5$$
, $A + C - B = 7$, $A - C = 3$

- Solve: A = 5, B = 0, C = 2
- Final Answer:

$$\frac{5x^2 + 7x + 3}{(x-1)(x^2 + x + 1)} = \frac{5}{x-1} + \frac{2}{x^2 + x + 1}$$

Solutions: Challenge Section

11. Decompose:

$$\frac{2x^2 + 3x + 1}{(x+2)^2(x-1)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$

Step 1: Multiply through by the denominator

Multiply through by $(x+2)^2(x-1)$:

$$2x^2 + 3x + 1 = A(x+2)^2 + B(x+2)(x-1) + C(x-1)$$

Step 2: Expand each term

1. Expand $A(x+2)^2$:

$$A(x+2)^2 = A(x^2 + 4x + 4) = Ax^2 + 4Ax + 4A$$

2. Expand B(x+2)(x-1):

$$B(x+2)(x-1) = B(x^2 + x - 2) = Bx^2 + Bx - 2B$$

3. Expand C(x-1):

$$C(x-1) = Cx - C$$

Combine all terms:

$$2x^2 + 3x + 1 = (A+B)x^2 + (4A+B+C)x + (4A-2B-C)$$

Step 3: Equate coefficients

Equate coefficients of x^2 , x, and the constant term:

- 1. Coefficient of x^2 : A+B=2
- 2. Coefficient of x: 4A + B + C = 3
- 3. Constant term: 4A-2B-C=1

Step 4: Solve the system of equations

- 1. From A + B = 2: B = 2 A.
- 2. Substitute B=2-A into 4A+B+C=3:

$$4A + (2-A) + C = 3$$
 \Rightarrow $3A + C = 1$ \Rightarrow $C = 1 - 3A$

$$4A - 2(2 - A) - (1 - 3A) = 1$$

Simplify:

$$4A-4+2A-1+3A=1 \quad \Rightarrow \quad 9A-5=1 \quad \Rightarrow \quad 9A=6 \quad \Rightarrow \quad A=rac{2}{3}$$

4. Solve for B:

$$B=2-A=2-rac{2}{3}=rac{4}{3}$$

5. Solve for C:

$$C = 1 - 3A = 1 - 3\left(\frac{2}{3}\right) = 1 - 2 = -1$$

Final Answer:

$$\frac{2x^2 + 3x + 1}{(x+2)^2(x-1)} = \frac{\frac{2}{3}}{x-1} + \frac{\frac{4}{3}}{x+2} - \frac{1}{(x+2)^2}$$

12. Decompose:

$$\frac{10x^2 - 2x - 4}{(x - 3)(x + 1)(x^2 + 1)} = \frac{A}{x - 3} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 1}$$

Step 1: Multiply through by the denominator

Multiply through by $(x-3)(x+1)(x^2+1)$:

$$10x^2 - 2x - 4 = A(x+1)(x^2+1) + B(x-3)(x^2+1) + (Cx+D)(x-3)(x+1)$$

Step 2: Expand each term

1. Expand $A(x+1)(x^2+1)$:

$$A(x+1)(x^2+1) = A(x^3+x^2+x+1)$$

2. Expand $B(x-3)(x^2+1)$:

$$B(x-3)(x^2+1) = B(x^3-3x^2+x-3)$$

3. Expand (Cx + D)(x - 3)(x + 1):

$$(Cx + D)(x - 3)(x + 1) = (Cx + D)(x^2 - 2x - 3) = Cx^3 - 2Cx^2 - 3Cx + Dx^2 - 2Dx - 3D$$

Combine all terms:

$$10x^2 - 2x - 4 = (A + B + C)x^3 + (A - 3B - 2C + D)x^2 + (A + B - 3C - 2D)x + (A - 3B - 3D)$$

Step 3: Equate coefficients

Equate coefficients of x^3 , x^2 , x, and the constant term:

- 1. Coefficient of x^3 : A + B + C = 0
- 2. Coefficient of x^2 : A 3B 2C + D = 10
- 3. Coefficient of x: A + B 3C 2D = -2
- 4. Constant term: A 3B 3D = -4

Step 4: Solve the system of equations

- 1. From A + B + C = 0: C = -A B.
- 2. Substitute C=-A-B into the other equations and solve the resulting system.

•
$$A=2$$
. $B=-1$. $C=-1$. $D=3$.

Final Answer:

$$\frac{10x^2 - 2x - 4}{(x - 3)(x + 1)(x^2 + 1)} = \frac{2}{x - 3} - \frac{1}{x + 1} - \frac{x - 3}{x^2 + 1}$$