Name:
 Score:

Teacher: _____ Date: _____

Optimisation

For questions 1 - 8 solve the optimisation problems.

1.	Find two positive numbers whose sum is 300 and whose product is a maximum.	2.	Find two positive numbers whose product is 750 and for which the sum of one and 10 times the other is a minimum.
3.	Let x and y be two positive numbers such that $x+2y=50$ and $(x+1)(y+2)$ is a maximum.	4.	We are going to fence in a rectangular field. If we look at the field from above the cost of the vertical sides are \$10/ft, the cost of the bottom is \$2/ft and the cost of the top is \$7/ft. If we have \$700 determine the dimensions of the field that will maximize the enclosed area.
5.	We have 45 m ² of material to build a box with a square base and no top. Determine the dimensions of the box that will maximize the enclosed volume.	6.	We want to build a box whose base length is 6 times the base width and the box will enclose 20 in ³ . The cost of the material of the sides is $3/in^2$ and the cost of the top and bottom is $15/in^2$. Determine the dimensions of the box that will minimize the cost.
7.	We want to construct a cylindrical can with a bottom but no top that will have a volume of 30 cm ³ . Determine the dimensions of the can that will minimize the amount of material needed to construct the can.	8.	We have a piece of cardboard that is 50 cm by 20 cm and we are going to cut out the corners and fold up the sides to form a box. Determine the height of the box that will give a maximum volume. 50 cm $20 \text{ cm} \Rightarrow$