7.4 – Volume and surface area | | Student name: | | Score: | | _ | |----|---|----------------------------|---------|-----------------|-----------| | 1. | A cuboid has a square base of side x cm and a heig | ght of y cm. | | | | | | Find, in terms of x and y , | | | | | | | (a) the volume of the cuboid, | | | | | | | | Answer(a) | | cm ³ | [1] | | | (b) the total surface area of the cuboid. | | | | | | | | Answer(b) | | cm ² | [2] | | 2. | The volume of a sphere of radius 3 cm is $k\pi$ cm ³ . | | | | | | | Find the value of k . | | | | | | | An | nswer k = | | | [2] | | 3. | A cuboid has a square base of side 10 cm and a volum | ne of 1200 cm ³ | | | | | | Work out the height of the cuboid. | | | | | | | | | | cn | n [2] | | 4. | Find the volume of a cone with radius 3 cm and perpendive your answer in terms of π . | ndicular height | t 8 cm. | | | | | | | | cm ³ | [2] | | 5. | | | | | | | | The volume of a cube is 27 cm ³ . | | | | | | | Find the total surface area. | | | | | | | 22 | | | cn | $n^2 [2]$ | | 6. | The volume of a sphere is $\frac{32}{3}\pi$ cm ³ . | | | | | | | Find the radius of the sphere. | | | C | m [2] | | | | | | | [2] | | | | | | | | | 7. | The surface area of a sphere with radius r is equal to the curved surface area of a cone with radius r and height h . | | | | |----|---|--|--|--| | | Show that $h = r\sqrt{k}$, where k is a constant. | | | | | | [4] | | | | | 8. | The volume of a sphere is 36π cubic centimetres. | | | | | | Find the radius of the sphere. | | | | | | | | | | | 9. | A cone has base radius 5 cm and height $\frac{5}{4}$ cm. | | | | | | A hemisphere has radius r cm. The volume of the hemisphere is equal to the volume of the cone. | | | | | | Find the value of r . | | | | | | $r = \dots [3]$ |