

5.7 – Properties of circles

Student name: _____ Score: _____

1.

NOT TO SCALE

The points A, B, C and D lie on a circle, centre O. AB is a diameter, angle $BAD = 55^{\circ}$ and angle $BDC = 20^{\circ}$. ABE and DCE are straight lines.

Find

(a) angle ABD,

(b) angle BCD,

(c) angle AED.

......35° [1]

.....15° [1]

A, B, C and D lie on a circle, centre O. AC is a diameter and angle $ACD = 20^{\circ}$. AB = BC. Find the values of x, y and z.

$$x = ...45^{\circ}$$
 [1]
 $y = ...40^{\circ}$ [1]

$$y = ..40^{\circ}$$
 [1] $z = ...70^{\circ}$ [1]

3.

NOT TO **SCALE**

A, B, C and D are points on the circle centre O. DCE is a straight line. Angle $AOD = 130^{\circ}$.

Find the value of

(a)
$$x$$
,

$$x = ..115^{\circ}$$
 [2]

$$y = ...65^{\circ}$$
 [2]

A, P, Q, B and R lie on a circle, centre O. Angle $APB = 65^{\circ}$.

Find

(a) angle AQB,

$$Answer(a) \text{ Angle } AQB = \frac{65^{\circ}}{}$$
 [1]

NOT TO SCALE

(b) angle AOB,

$$Answer(b) \text{ Angle } AOB = \frac{130^{\circ}}{}$$
 [1]

(c) angle ARB.

$$Answer(c) \text{ Angle } ARB = \frac{115^{\circ}}{}$$
 [1]

5.

B, C, D and E lie on a circle, centre O. CE is a diameter, angle $DAC = 30^{\circ}$ and angle $BOE = 70^{\circ}$.

Find the values of x, y and z.

$$x = ..35^{\circ}.$$
 $y = ..55^{\circ}.$
 $z = ...60^{\circ}.$
[3]

6. (a)

NOT TO SCALE

A, B, C and D lie on the circumference of a circle. Angle $ABC = 98^{\circ}$ and angle $ACB = 50^{\circ}$.

Find the value of x and the value of y.

$$Answer(a) x = \frac{32^{\circ}}{}$$
 [1]

$$y = \frac{32^{\circ}}{}$$
 [1]

(b)

NOT TO SCALE

P, Q, R and S lie on the circumference of a circle, centre O. TP is a tangent to the circle at P and PR is a diameter.

Find the value of v and the value of w.

$$Answer(b) v = 25^{\circ}$$
 [1]

$$w = 65^{\circ}$$
 [1]

7. A, B, C and D are points on the circle, centre O. PQ is a tangent to the circle at the point C.

Angle $PCD = 55^{\circ}$ and angle $ADO = 40^{\circ}$.

NOT TO SCALE

Find

- (a) angle COD,
- **(b)** angle DAC,
- (c) angle ABC.

-110° [2]
-55°.....[1]
-105° [1]

8.

NOT TO SCALE

A, B, C and D are points on the circle centre O. Angle $BOD = 130^{\circ}$.

(a) Find angle DCB.

Angle
$$DCB = ...65^{\circ}$$
 [1]

(b) Find angle BAD.

Angle
$$BAD = ...115^{\circ}$$
 [1]

B, D and P are points on the circumference of a circle, centre O. TBA and TDC are tangents to the circle. DP is a diameter and angle $BTD = 40^{\circ}$.

Find the size of angle ABP.

....[2]

10.

NOT TO SCALE

A, B, C and D lie on a circle, centre O.

Find the value of x and the value of y.

$$x =50^{\circ}$$

 $y =130^{\circ}$ [2]

A, B, C, and D lie on a circle, centre O.

AD is parallel to OC and angle $ADC = 108^{\circ}$.

Find

(a) angle ABC,

(b) angle AOC,

144°
Answer(b)[1]

(c) angle OCA,

(d) angle DAC.

Answer(d)[1]

A, B, C and D lie on the circle, centre O.

Work out the value of y.

13.

NOT TO SCALE

A, B, C, D and E are points on a circle. CE and AD intersect at P.

Angle $DCP = 40^{\circ}$ and angle $CPD = 75^{\circ}$.

Find

(a) angle DAE,

Angle
$$DAE = \frac{40^{\circ}}{}$$
 [1]

(b) angle ABC.

Angle
$$ABC = 115^{\circ}$$
 [2]

NOT TO SCALE

A, B, C, D and E lie on the circle. Angle $BCE = 75^{\circ}$.

Find the value of p and the value of q.

 $p = ... 75^{\circ}$ $q = 105^{\circ}$ [2]

15.

NOT TO SCALE

A, B, C, D and E are points on the circle. Angle $CAD = 35^{\circ}$ and angle $EBD = 15^{\circ}$.

Find

- (a) angle CBD,
- (b) angle CDE.

Angle
$$CBD =[1]$$

Angle
$$CDE = \frac{130^{\circ}}{1000}$$
 [1]

NOT TO SCALE

O is the centre of the circle.

Find the value of x and the value of y.

$$x = \frac{70^{\circ}}{}$$

$$y = \frac{110^{\circ}}{}$$
 [2]

17.

NOT TO SCALE

The diagram shows a cyclic quadrilateral.

Find the value of a and the value of b.

$$a = \frac{25^{\circ}}{100^{\circ}}$$

$$b = \frac{100^{\circ}}{100^{\circ}}$$

The diagram shows a circle, centre *O*. *AOB* is a straight line. *BCD* is a tangent to the circle at *C*.

Find y in terms of x.

 $y = \frac{135 + 0.5x}{}$ [3

19.

NOT TO SCALE

A, B and C are points on a circle. TA is a tangent to the circle at A. CA = CB and angle $BAT = 70^{\circ}$.

Work out the value of x.

$$x = \frac{55^{\circ}}{}$$
 [2]

NOT TO SCALE

A, B, C and D are points on the circle. PBQ is a straight line.

(a) Find angle DCB, giving a reason for your answer.

Angle $DCB = ...82^{\circ}$ because Opposite angles of a cyclic quadrilateral add up to 180° .

(b) Is *PBQ* a tangent to the circle? Give a reason for your answer.

No because any mention of Alternate Segment Theorem

.....

21.

NOT TO SCALE

Points Q, R, S and T lie on the circle. AB is a tangent to the circle at T. Angle $RTB = 70^{\circ}$.

Find angle *RQT*.

Angle
$$RQT = \frac{110^{\circ}}{}$$
 [2]

22. (a)

NOT TO SCALE

A, B, C, and D are points on a circle.

Angle $DAC = 32^{\circ}$.

BC = DC.

Find angle BCD.

Angle
$$BCD = ...116^{\circ}$$
 [2]

(b)

NOT TO SCALE

A, B and C are points on the circle centre O. ECD is a tangent to the circle at C.

Angle $ACE = 42^{\circ}$.

Find angle AOC.

Angle
$$AOC =84^{\circ}$$
 [2]

NOT TO SCALE

A, B, C and D are points on a circle centre O.

Find

(a) angle ACD,

Angle
$$ACD = \frac{110^{\circ}}{110^{\circ}}$$
 [2]

(b) angle *BAD*.

24.

NOT TO SCALE

ABCD is a cyclic quadrilateral.

DC is extended to E.

Angle $BCE = 130^{\circ}$, angle $ABC = 6x^{\circ}$ and angle $ADC = 9x^{\circ}$.

Find the value of

(a) angle BAD,

Angle
$$BAD = \frac{130^{\circ}}{130^{\circ}}$$
 [1]

(b) angle ABC.

Angle
$$ABC =72^{\circ}$$
 [2]

A, B, C and D are points on the circle centre O. PQ is a tangent to the circle at C.

Find these angles.

(a) Angle DAC 70°

(b) Angle *ABC* 120°

(c) Angle ACQ 60°

[2]

[2]

26. (a)

T, U and V lie on a circle, centre O. PQ is a tangent to the circle at T. TU is a diameter.

Find the value of x and the value of y.

v = 42°

(b)

ABCD is a cyclic quadrilateral.

Find the value of p and the value of q.

27. (a)

 $D = \begin{pmatrix} C & \text{NOT TO} \\ \text{SCALE} \end{pmatrix}$

The points A, B, C and D lie on the circle.

Find the value of x.

 $a = \frac{80^{\circ}}{1}$

(b)

The points A, B and C lie on the circle, centre O.

Find the value of y.

28.

The points A, B, C and D lie on a circle. PCQ is a tangent to the circle at C. Angle $ABC = 110^{\circ}$ and angle $BAC = 30^{\circ}$.

(a) angle ADC,

Find

- **(b)** angle ACP,
- (c) angle *PCB*.

Angle
$$ACP = \frac{70^{\circ}}{}$$
 [1]

Angle
$$PCB = \frac{30^{\circ}}{1}$$

AB is a tangent to the circle at T.

Find the value of x.

30.

A, B, C and D are four points on a circle. AC and BD meet at E. XAY is a tangent to the circle at A.

Find

- (a) angle *CDB*,
- **(b)** angle ACB,
- (c) angle DCE,
- (d) angle YAD.

Angle
$$CDB =25^{\circ}$$
 [1]

Angle
$$ACB = \frac{40^{\circ}}{}$$
 [1]

Angle
$$DCE = \frac{60^{\circ}}{}$$
 [1]

Angle
$$YAD = \frac{60^{\circ}}{}$$
 [1]

A, B, C and D are points on the circle. PQ is a tangent to the circle at D. Angle $BDQ = 55^{\circ}$.

Complete these statements giving a reason for each answer.

(a)	Angle $BAD =55^{\circ}$ because Alternate segments	
(b)	Angle $BCD = 125^{\circ}$ because Opposite angles in a cyclic quadrilateral	[2]
		[2]

