

4.1 - 4.6 - Coordinate Geometry

		Student name:	Answers	_ Score:
1.	The	co-ordinates of three poir	ats are $A(-2, 6)$, $B(6, 2)$ and $C(-2, -2)$.	
	(a)	Find the gradient of AB.		$-\frac{1}{2}$ [1]
	(b)	D is the midpoint of AB .		
		By using gradients show t	hat the straight lines AB and CD are not perpe	endicular.
			D(2, 4), gradient CD = $\frac{6}{4}$ is not negat	ive reciprocal of AB [3]
2.	<i>P</i> i	s the point $(-2, 5)$ and Q i	s the point $(4, 1)$.	
	(a)	Find the co-ordinates of	the midpoint of <i>PQ</i> .	
				(<mark>1</mark>) [1]
	(b)	Find the gradient of PQ.		
	(a)	(i) Find the equation of	the line normandicular to PO which pages the	_
	(c)	(i) Find the equation of	the line perpendicular to PQ which passes thr	ough the point $(0, 4)$. $y = \frac{3}{2}x + 4$ [2]
		(ii) Find the x co-ordin	ate of the point where this line cuts the x-axis.	
				$x = \dots \frac{\frac{8}{3}}{3} \dots [1]$
3.	A is	s the point $(2, 8)$ and B is the	e point (6, 0).	
	(a)	Find the co-ordinates of the	ne midpoint of AB .	
				(4) [1]
	(b)	Find the gradient of AB.		
				[2]
4.	The	point A has co-ordinates (2	(2, 8) and the point $(3, 8)$ has co-ordinates $(6, 6)$.	
	Fin	d the equation of the perper	ndicular bisector of the line AB.	
				y = 2x - 1 [4]

5. The points A(1, 9) and B(7, 1) are shown on the diagram below.

(a) Calculate the length AB.

		1		r	١									
			Ļ	Ċ	•									[2]

(b) (i) Find the co-ordinates of the midpoint of the line AB.

$$(..4...., 5.....)$$
 [1]

(ii) Find the equation of the perpendicular bisector of the line AB.

$$y-5=\frac{3}{4}(x-4)$$
 [3]

6. The gradient of the line joining the points (2, 1) and (6, a) is $\frac{3}{2}$.

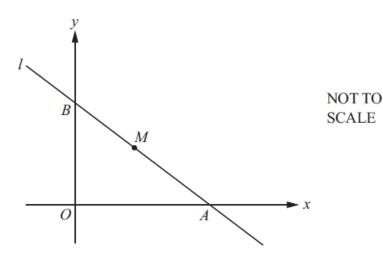
Find the value of a.

$$a =$$
 [3]

7. Find the equation of the straight line passing through (-2, -4) and (2, 0).

$$y = x - 2$$
 [3]

8. A is the point (-4, 4) and B is the point (4, 10).


Find the equation of the perpendicular bisector of AB.

$$y = -\frac{4}{3}x + 7$$
 [4]

9. The point *A* has co-ordinates (1, 3) and the point *B* has co-ordinates (4, 1). *B* is the midpoint of the line *AC*.

Find the co-ordinates of the point C.

10.

The equation of the line l is 3x + 4y = 12.

The line cuts the x-axis at A and the y-axis at B.

The midpoint of AB is M.

- (a) Find the co-ordinates of
 - (i) A,

(ii) B,

(iii) *M*.

(b) Find the equation of the line through the origin which is perpendicular to the line *l*. $y = \frac{4}{3}x$ [3]

$$y = \frac{4}{3}x$$
 [3]

11. The gradient of the line joining the points (2, 1) and (6, a) is $\frac{3}{2}$.

Find the value of a.

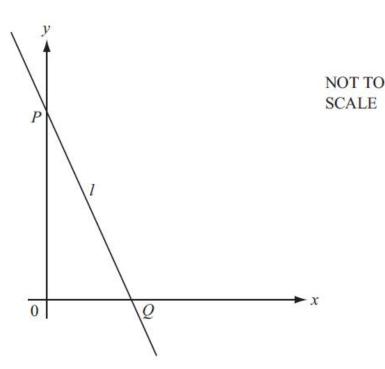
$$a =$$
 [3]

12. The equation of a line passing through the point (2, 3) is ax + by = d, where $a, b, d \in \mathbb{N}$. This line is perpendicular to the line y = 2x + 5.

Find the values of a, b and d.

$$a = \dots \frac{1}{1}$$

$$b = \dots 2$$
.....


$$d = ...$$
 [3]

13. The equation of a straight line is 3x + 4y = 12.

Write the equation in the form y = mx + c.

$$y = \frac{-\frac{3}{4}x + 3}{2}$$
 [2]

14.

The diagram shows a line, l, which passes through the points P(0, 4) and Q(2, 0).

(a) Find the equation of the line l.

$$y = -2x + 4$$
 [2]

(b) Find the equation of the line which is perpendicular to l and passes through the midpoint of PQ.

$$y = \frac{1}{2}x + \frac{3}{2}$$
 [4]

15. A is the point (3, 11) and B is the point (7, 3).

Find the equation of the line AB, giving your answer in the form y = mx + c.

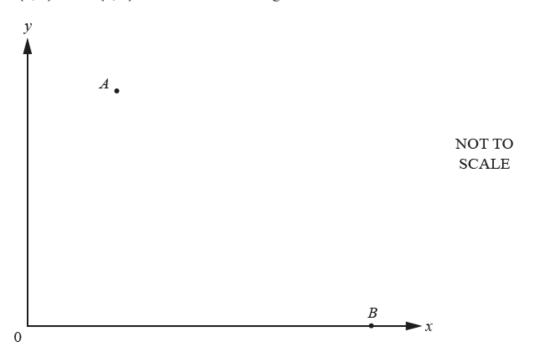
$$y = ... 2x + .17...$$
 [3]

16. The point A has co-ordinates (3, 8). The point B has co-ordinates (7, 0).

(a) Find the co-ordinates of the midpoint of AB.

- **(b)** Find the equation of the perpendicular bisector of *AB*. Write your answer in the form y = mx + c.

$$y = \frac{-\frac{1}{2}x + 1\frac{1}{2}}{2}$$
 [3]


17. A is the point (1, 8) and B is the point (5, 0).

Find the equation of the perpendicular bisector of AB in the form y = mx + c.

$$y = \frac{1}{2}x + \frac{5}{2} \tag{4}$$

18. The points A(3, 8) and B(9, 0) are shown on the diagram below.

Find the equation of the perpendicular bisector of the line AB.

$$4y = 3x - 2$$
 [5]

19. Point *A* has co-ordinates (2, 12). Point *B* has co-ordinates (4, 2).

Find the co-ordinates of the midpoint of AB.

20. Point A has co-ordinates (2, 3). Point B has co-ordinates (4, 11).

Find the equation of the line AB.

Give your answer in the form y = mx + c.

$$y = \frac{4x - 5}{}$$
 [3]

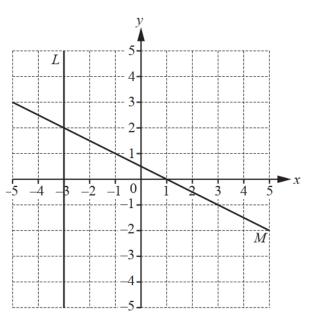
21. A is the point (1, 7) and B is the point (4, 13).

Find the equation of the perpendicular bisector of AB in the form y = mx + c.

$$y = ... -0.5x + 11.25$$
 [5]

22. Find the equation of the line parallel to the line y = 3 - x that passes through the point (0, 7).

$$y = 7 - x \tag{2}$$


23. A is the point (-1, 13) and B is the point (3, 1).

Find the equation of the line AB, giving your answer in the form y = mx + c.

$$y = ... - 3x + 10$$
 [3]

24.

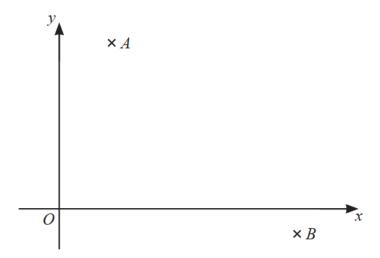
(a) Write down the equation of line L.

$$x = -3$$
 [1]

(b) Write down the co-ordinates of the point of intersection of line L and line M.

$$(...-3, 2, ...)[1]$$

(c) Find the gradient of line M.


$$-\frac{1}{2}$$
 [2]

25. A is the point (-2, 4) and B is the point (7, 1).

Find the length of AB giving your answer in its simplest surd form.

$$3\sqrt{10}$$
 [4

26.

NOT TO SCALE

The points A(2, 8) and B(6, -2) are shown on the diagram.

Find the equation of the perpendicular bisector of the line AB. Give your answer in the form y = mx + c.

$$y = \frac{2}{5}x + \frac{7}{5}$$
 [5]

27.	A is	the point $(-5, 7)$ and C is the point $(1, -2)$.											
	(a)	B is the mid-point of AC .											
		Find the coordinates of B .											
			(,	2.25) [2]									
	(b)	The line CD is perpendicular to the line AC .											
		Find the equation of line <i>CD</i> .	$y = \frac{2}{3}x - \frac{8}{3}$	[4]									
28.	A is	the point $(3, 6)$ and B is the point $(-5, 10)$.											
	(a)	Work out the co-ordinates of the midpoint of AB .											
			(1,8) [2]									
	(b)	Find the length of AB, giving your answer in the form $a\sqrt{5}$.	4./ E										
			4√5	[3]									
29.	The	point A has co-ordinates $(1, 9)$. The point B has co-ordinates $(4, 9)$.	5).										
	Find	d the length of AB .	5	[2]									
30.	30. Find the equation of the straight line perpendicular to the line $y = 2x + 1$ that passes												
		Sough the point $(2, 5)$. The your answer in the form $y = mx + c$. $y = mx + c$.	$= \frac{1}{2}x + 6$	[3]									
31.		the point $(0, 8)$ and B is the point $(6, 0)$. The line L passes through B and is perpendicular to AB .											
	Fine	d the equation of L .	$y = \frac{3}{4}x - \frac{9}{2}$	[4]									
32.	The	point A has co-ordinates $(1, -5)$ and the point B has co-ordinates	tes (9,1).										
	Fine	d the equation of the perpendicular bisector of AB in the form y	$y = mx + c \frac{4}{3}x + \frac{14}{3}$	[5]									
33.		equation of the line <i>L</i> is $y = 3x - 2$.											
	(a)	Find the co-ordinates of the point A , where the line L crosses the	•	2									
	(b)	Find the co-ordinates of the point B , where the line L crosses the		, 0 [1]									
	(c)	The line M passes through the point A and is perpendicular to the		, <mark>\</mark>) [1]									
		Find the equation of the line M .	$y = -\frac{1}{3}x - 2$	[2]									
				(10.4hrs)									

www.mathssupport.org

34. A is the point (1, 7) and B is the point (4, 1).

Find the equation of the perpendicular bisector of AB in the form y = mx + c. $\frac{1}{2}x + \frac{11}{4}$ [5]

35. A is the point (3, 7) and B is the point (9, -1).

Calculate the length *AB*.

$$AB = \frac{10}{10}$$
 [3]

36. *A* is the point (1, 11) and *B* is the point (4, 5).

Find the equation of the perpendicular bisector of AB. Give your answer in the form y = mx + c.

$$y = \frac{1}{2}x + \frac{27}{4}$$
 [5]

