

2.5 – Rearranging formulae

	81118 1911119119
Student name:	Score:
1. Write the following as algebraic expressions.	
(a) One-third of the sum of p and q .	
(b) The square root of the product of x and y .	[1
2. Make <i>t</i> the subject of the formula.	[2
$y = \frac{a}{t - 2}$	
$3. \qquad \frac{d}{x-c} = \frac{x+c}{d}$	$t = \dots $ [3
Find x in terms of c and d .	<i>x</i> =[3
4. The area of a semicircle is given by the formula	$A = \frac{\pi r^2}{2}.$
Make r the subject of the formula.	
5. Rearrange this equation to make <i>x</i> the subject. $ax - 3y = b(x + 2y)$	r =[3
6. Make <i>x</i> the subject of the formula $y = ax^3$.	<i>x</i> =[3
7. $v = u + at$	$x = \dots [2]$
Rearrange the formula to write t in terms of a , u and v .	
8. Make x the subject of the equation.	t =[2
$\frac{a}{x+3} = \frac{b}{x}$	<i>x</i> =[3
9. $v = u + at$	
(a) Find the value of v when $u = 12$, $a = -2$ and $t = 5$.	-
(b) Rearrange the formula to make <i>a</i> the subject.	[
	Γ/

10. Make u the subject of the formula.

$$v^2 = u^2 + 2as$$

11. v = u + at

$$u = \dots$$
 [2]

(a) Find v when u = 5, a = -1 and t = 1.5.

(b) Rearrange the formula to write a in terms of t, u and v.

$$a = \dots$$
 [2]

12. (a) Use the formula $A = \frac{h}{2}(x + y)$ to find the value of A when x = 7, y = 13 and h = 6.4.

$$A = \dots$$
 [2]

(b) Rearrange the formula to make *x* the subject.

 $13. t = \frac{1}{p^2}$

Rearrange the formula to write p in terms of t.

 $p = \dots [2]$

14.

A small square of side 2y is inside a larger square of side 6x.

(a) Find an expression for the shaded area, A, in terms of x and y.

$$A = \dots$$
 [2]

(b) Rearrange your answer to part (a) to write x in terms of y and A.

$$x = \dots [3]$$

15. $v^2 = u^2 - 2as$

Find s in terms of a, u and v.

$$s = \dots [2]$$

 $v = \frac{uf}{u - f}$

(a) Find the value of v when u = 30 and f = 10.

$$v = \dots$$
 [2]

(b) Rearrange the formula to make f the subject.

$$x = \dots [3]$$

17. Rearrange this formula to make x the subject.

$$y = \frac{ax}{bx + c}$$

18. Rearrange this formula to make b the subject.

$$A = \frac{(a+b)}{2}h$$

$$b = \dots [3]$$

19. $t = 3p^2$

(a) Find the value of t when p = 4.

$$t =$$
 [1]

(b) Re-arrange the formula to write p in terms of t.

$$p = \dots [2]$$

20. Make *a* the subject of $s = ut + \frac{1}{2}at^2$.

21. $A = 2\pi rh + 3\pi r^2$

Rearrange the formula to write h in terms of π , r and A.

$$h = \dots [2]$$

22. Rearrange the formula to make x the subject.

$$y(x+4) = 2$$

$$x =$$
 [2]

23. Rearrange this equation to make x the subject.

$$\frac{a}{2x-3} = \frac{b}{5x}$$

$$x =$$
 [3]

24. $y = \frac{2}{x+3}$

Rearrange the formula to make x the subject.

$$x =$$
 [3]

25. Find the value of $x^2 - x$ when x = -3.

26. $A = P(1+x)^3$

Rearrange the formula to write x in terms of A and P.

$$x =$$
 [3]

27. $y = 2x^2 - 1$

Rearrange the formula to write x in terms of y.

$$x =$$
 [3]

28. Rearrange the formula to make x the subject.

$$A = \frac{3x}{2x - 5}$$

29. y = mx + c

(a) Find y when $m = \frac{1}{2}$, x = -2 and c = 4.

 $y = \dots [2]$

(b) Rearrange the formula to write m in terms of x, y and c.

 $m = \dots [2]$

30. Make *l* the subject of the formula $T = 2\pi \sqrt{\frac{l}{g}}$.

l =[3]

31. Rearrange the formula to make x the subject.

$$y = 1 - \frac{x}{3x - 5}$$

32. Rearrange this formula to make a the subject.

$$y = \frac{3a - 2}{a - 1}$$

33. v = u + at

(a) Find v when u = 5, a = -3 and t = 4.

 $v = \dots$ [2]

(b) Rearrange the formula to make u the subject.

 $u = \dots [1]$

34. $J = m(k^2 + h^2)$

Rearrange the formula to make h the subject.

$$h =$$
 [3]

35. $y = \frac{w^2}{2}$

Rearrange the formula to make w the subject.

$$w = \dots$$
 [1]

36. $P = 2a + b^2 - 3c$

Find P when a = 5, b = -4 and c = -3.

$$P =$$
 [2]

37. Rearrange the formula to write x in terms of a and y.

$$y = \sqrt{x^2 + 2a^2}$$

$$x = \dots$$
 [3]

