

1.9 – Binomial expansion

	Student name:	Score:
1.	[Maximum mark: 5]	
	Consider the expansion of $(x + 4)^9$	
	(a) Write down the number of terms in this expansion. 10	[1]
	(b) Find the term containing x^4 . 129024 x^4	[4]
2.	[Maximum mark: 7]	
	Consider the expansion of $x^2 \left(2x^3 + \frac{k}{x}\right)^{10}$. The constant term is 46	6080.
	Find k . $k = \pm 2$	
3.	[Maximum mark: 5]	
	Consider the expansion of $(3x + 4)^9$.	
	(a) Write down the number of terms in this expansion. 10	[1]
	(b) Find the term in x^4 . 10450944 x^4	[4]
4.	[Maximum mark: 5]	
	The third term in the expansion of $\left(2x + \frac{k}{2}\right)^6$ is $375x^4$. Find the possible values of k .	
	$k = \pm 2.5$	
5.	[Maximum mark: 6]	
	(a) Find the term in x^5 in the expansion of $(x + 3)^8$. 1512 x^5	[4]
	(b) Hence, find the term in x^6 in the expansion of $7x(x+3)^8$. 1058	$84x^6$ [2]
6.	[Maximum mark: 6]	
	Consider the expansion of $\left(2x^3 + \frac{3}{2x^2}\right)^{10}$	
	(a) Write down the number of terms of this expansion. 11	[1]

[5]

(b) Find the coefficient of x^{10} . 68040

7. [Maximum mark: 6]

Consider the expansion of $\left(\frac{x^4}{3} + \frac{p}{x^2}\right)^{12}$. The constant term is 40095. Find the possible values of p. $p = \pm 3$

8. [Maximum mark: 6]

In the expansion of $ax^3 (2 + ax)^{11}$, the coefficient of the term in x^5 is 11880. Find the value of a.

$$a = \frac{3}{4}$$

9. [Maximum mark: 6]

Let $f(x) = (x^2 + 3)^7$. Find the term in x^5 in the expansion of the derivative, f'(x).

 $17010x^{5}$

10.[Maximum mark: 7]

Given that $\left(1 + \frac{2}{3}x\right)^n (3 + nx)^2 = 9 + 84x + \cdots$ find the value of n.

11.[Maximum mark: 6]

(a) Expand
$$(2 + x)^4$$
 and simplify your results. $16 + 32x + 24x^2 + 8x^3 + x^4$ [3]

(b) Hence, find the term in
$$x^2$$
 in $(2 + x)^4 \left(1 + \frac{1}{x^2}\right) \cdot \frac{25x^2}{}$ [3]

12.[Maximum mark: 6]

The fifth term in the expansion of the binomial $(a+b)^n$ is given by $\binom{10}{4}p^6(2q)^4$.

(a) Write down the value of
$$n$$
. $n = 10$ [1]

(b) Write down a and b, in terms of p and/or q.
$$a = p$$
; $b = 2q$ [2]

(c) Write down an expression for the sixth term in the expansion.
$$3360p^6q^4$$
 [3]

