Name: Score: Teacher: _____ Date: _____

Newton's method

For questions 1 & 2 use Newton's Method to determine x_2 for the given function and given value of x_0 .

1.
$$f(x) = x^3 - 7x^2 + 8x - 3$$
, $x_0 = 5$ 2. $f(x) = x\cos(x) - x^2$, $x_0 = 1$

2.
$$f(x) = x\cos(x) - x^2$$
, $x_0 = 1$

For problems 3 & 4 use Newton's Method to find the root of the given equation, accurate to six decimal places, that lies in the given interval.

3.
$$x^4 - 5x^3 + 9x + 3 = 0$$
 in $[4, 6]$

4.
$$2x^2 + 5 = \mathbf{e}^x \text{ in } [3, 4]$$

For questions 5 & 6, use Newton's Method to find all the roots of the given equation accurate to six decimal places.

5.
$$x^3 - x^2 - 15x + 1 = 0$$

$$6. \quad 2-x^2=\sin(x)$$

