

10.3 – Binomial expansion

Student name: ______ Score: _____

1. (a) Find the binomial series expansion of

$$\sqrt{4-9x}$$
, $|x|<\frac{4}{9}$

in ascending powers of x, up to and including the term in x^2 Give each coefficient in its simplest form.

(b) Use the expansion from part (a), with a suitable value of x, to find an approximate value for $\sqrt{310}$

Show all your working and give your answer to 3 decimal places.

2. $f(x) = (2 + kx)^{-3}$, |kx| < 2, where k is a positive constant

The binomial expansion of f(x), in ascending powers of x, up to and including the term in x^2 is

$$A + Bx + \frac{243}{16}x^2$$

where A and B are constants.

- (a) Write down the value of A.
- (b) Find the value of k.
- (c) Find the value of B.
- 3. Use the binomial series to find the expansion of

$$\frac{1}{\left(2+5x\right)^3}, \qquad \left|x\right| < \frac{2}{5}$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a fraction in its simplest form.

4. (a) Find the binomial expansion of

$$(4+5x)^{\frac{1}{2}}, |x| < \frac{4}{5}$$

in ascending powers of x, up to and including the term in x^2 . Give each coefficient in its simplest form.

(b) Find the exact value of $(4 + 5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$

Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

(c) Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{2}$

Give your answer in the form $\frac{p}{q}$ where p and q are integers.

5. Given that the binomial expansion of $(1 + kx)^{-4}$, |kx| < 1, is

$$1 - 6x + Ax^2 + \dots$$

- (a) find the value of the constant k,
- (b) find the value of the constant A, giving your answer in its simplest form.

6. Given

$$f(x) = (2 + 3x)^{-3}, \quad |x| < \frac{2}{3}$$

find the binomial expansion of f(x), in ascending powers of x, up to and including the term in x^3 .

Give each coefficient as a simplified fraction.

$$f(x) = \frac{6}{\sqrt{(9-4x)}}$$
, $|x| < \frac{9}{4}$

(a) Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 . Give each coefficient in its simplest form.

Use your answer to part (a) to find the binomial expansion in ascending powers of x, up to and including the term in x^3 , of

(b)
$$g(x) = \frac{6}{\sqrt{(9+4x)}}$$
, $|x| < \frac{9}{4}$

(c)
$$h(x) = \frac{6}{\sqrt{(9-8x)}}$$
, $|x| < \frac{9}{8}$

8. (a) Expand

$$\frac{1}{(2-5x)^2}$$
, $|x| < \frac{2}{5}$

in ascending powers of x, up to and including the term in x^2 , giving each term as a simplified fraction.

Given that the binomial expansion of $\frac{2+kx}{(2-5x)^2}$, $|x| < \frac{2}{5}$, is

$$\frac{1}{2} + \frac{7}{4}x + Ax^2 + \dots$$

- (b) find the value of the constant k,
- (c) find the value of the constant A.

9.

$$f(x) = \frac{1}{\sqrt{(9+4x^2)}}$$
, $|x| < \frac{3}{2}$

Find the first three non-zero terms of the binomial expansion of f(x) in ascending powers of x. Give each coefficient as a simplified fraction.

(a) Use the binomial theorem to expand

$$(2-3x)^{-2}$$
, $|x|<\frac{2}{3}$,

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

$$f(x) = \frac{a+bx}{(2-3x)^2}$$
, $|x| < \frac{2}{3}$, where a and b are constants.

In the binomial expansion of f(x), in ascending powers of x, the coefficient of x is 0 and the coefficient of x^2 is $\frac{9}{16}$. Find

- (b) the value of a and the value of b,
- (c) the coefficient of x^3 , giving your answer as a simplified fraction.
- 11. (a) Find the binomial expansion of

$$\sqrt{(1-8x)}$$
, $|x|<\frac{1}{8}$

in ascending powers of x up to and including the term in x^3 , simplifying each term.

- (b) Show that, when $x = \frac{1}{100}$, the exact value of $\sqrt{(1-8x)}$ is $\frac{\sqrt{23}}{5}$.
- (c) Substitute $x = \frac{1}{100}$ into the binomial expansion in part (a) and hence obtain an approximation to $\sqrt{23}$. Give your answer to 5 decimal places.

12.

$$f(x) = \frac{1}{\sqrt{(4+x)}}, \quad |x| < 4$$

Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction.

- 13. (a) Expand $\frac{1}{\sqrt{(4-3x)}}$, where $|x| < \frac{4}{3}$, in ascending powers of x up to and including the term in x^2 . Simplify each term.
 - (b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{(4-3x)}}$ as a series in ascending powers of x.

