

Geometric sequences

Student name: ______ Score: _____

- 1. The fourth term, u_4 , of a geometric sequence is 135. The fifth term, u_5 , is 101.25.
 - (a) Find the common ratio of the sequence.

[2 marks]

(b) Find u_1 , the first term of the sequence.

[2 marks]

2. The second term of an arithmetic sequence is 30. The fifth term is 90.

The first, second and fifth terms of this arithmetic sequence are the first three terms of a geometric sequence.

Calculate the seventh term of the geometric sequence.

[3]

3. Only one of the following four sequences is arithmetic and only one of them is geometric.

$$a_n = 1, 2, 3, 5, \dots$$

$$b_n = 1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \dots$$

$$c_n = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

$$d_n = 1$$
, 0.95, 0.90, 0.85, ...

- (a) State which sequence is
 - (i) arithmetic;
 - (ii) geometric.

[2]

- (b) For another geometric sequence $e_n = -6, -3, -\frac{3}{2}, -\frac{3}{4}, \dots$
 - (i) write down the common ratio;

[1]

- (ii) find the exact value of the tenth term. Give your answer as a fraction.
- [3]
- **4.** The first three terms of a geometric sequence are $u_1 = 0.64$, $u_2 = 1.6$, and $u_3 = 4$.

[2]

5. Consider a geometric sequence where the first term is 768 and the second term is 576.

Find the least value of n such that the nth term of the sequence is less than 7.

Find the value of r.

6. Consider the geometric sequence 2048, 1536, 1152, 864 ...

(a) Find the common ratio, r. [1]

(b) Write down the next term of the sequence, u_s . [1]

(c) Find the largest term in the sequence that is **not** an integer. [2]

7. Consider a geometric sequence where the first term is 768 and the second term is 576.

Find the least value of n such that the nth term of the sequence is less than 7.

8. The first term of a geometric sequence is 2 and the third term is 2.205.

Calculate

(a) the common ratio of the sequence;

[2 marks]

(b) the eleventh term of the sequence;

[2 marks]

- 9. The third term of a geometric sequence is 12 and the fifth term is $\frac{16}{3}$. All the terms in the sequence are positive. Calculate the value of the common ratio.
- 10. Consider the geometric sequence 8, a, 2,... for which the common ratio is $\frac{1}{2}$.
 - (a) Find the value of a.
 - (b) Find the value of the eighth term.
- 11. Consider the infinite geometric sequence 25, 5, 1, 0.2,
 - (a) Find the common ratio.
 - (b) Find
 - (i) the 10th term;
 - (ii) an expression for the n^{th} term.

Geometric sequences

Student name: _____Score: _____

- 1. The fourth term, u_4 , of a geometric sequence is 135. The fifth term, u_5 , is 101.25.
 - (a) Find the common ratio of the sequence. r = 0.75

[2 marks]

(b) Find u_1 , the first term of the sequence. 320

[2 marks]

2. The second term of an arithmetic sequence is 30. The fifth term is 90.

The first, second and fifth terms of this arithmetic sequence are the first three terms of a geometric sequence.

Calculate the seventh term of the geometric sequence. 7290

[3]

3. Only one of the following four sequences is arithmetic and only one of them is geometric.

$$a_n = 1, 2, 3, 5, \dots$$

$$b_n = 1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \dots$$

$$c_n = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

$$d_n = 1$$
, 0.95, 0.90, 0.85, ...

- (a) State which sequence is
 - (i) arithmetic; d_i
 - (ii) geometric. b_n

[2]

- (b) For another geometric sequence $e_n = -6, -3, -\frac{3}{2}, -\frac{3}{4}, \dots$
 - (i) write down the common ratio; r = 0.5

[1]

[3]

- (ii) find the exact value of the tenth term. Give your answer as a fraction. $\frac{3}{256}$
- **4.** The first three terms of a geometric sequence are $u_1 = 0.64$, $u_2 = 1.6$, and $u_3 = 4$.

Find the value of r. r = 2.5

[2]

5. Consider a geometric sequence where the first term is 768 and the second term is 576.

Find the least value of n such that the nth term of the sequence is less than 7. n = 18

6. Consider the geometric sequence 2048, 1536, 1152, 864 ...

- (a) Find the common ratio, r. 0.75
- (b) Write down the next term of the sequence, u_5 . 648 [1]
- (c) Find the largest term in the sequence that is **not** an integer. 364.5 [2]
- 7. Consider a geometric sequence where the first term is 768 and the second term is 576.

Find the least value of n such that the nth term of the sequence is less than 7. 18

8. The first term of a geometric sequence is 2 and the third term is 2.205.

Calculate

- (a) the common ratio of the sequence; r = 1.05 [2 marks]
- (b) the eleventh term of the sequence; n = 3.26 [2 marks]
- 9. The third term of a geometric sequence is 12 and the fifth term is $\frac{16}{3}$. All the terms in the sequence are positive. Calculate the value of the common ratio. $r = \frac{2}{3}$
- **10.** Consider the geometric sequence 8, a, 2,... for which the common ratio is $\frac{1}{2}$.
 - (a) Find the value of a. a = 4
 - (b) Find the value of the eighth term. 0.0625
- **11.** Consider the infinite geometric sequence 25, 5, 1, 0.2,
 - (a) Find the common ratio. $r = \frac{1}{5}$
 - (b) Find
 - (i) the 10^{th} term; 0.0000128
 - (ii) an expression for the n^{th} term. $u_n = 25 \left(\frac{1}{5}\right)^{n-1}$

