Introduction to logarithms

Student name: ______ Score: _____

- **1.** Write an equivalent logarithmic statement for:
 - (a) $2^6 = 64$
 - (b) $7^3 = 343$
 - (c) $3^4 = 81$
 - d) $10^{-2} = 0.01$
 - (e) $8^2 = 64$
- 2. Write an equivalent exponential statement for:
 - $(a)\log_2 8 = 3$
 - (b) $\log 10000 = 4$
 - (c) $\log_3 243 = 5$
 - (d) $\log_5 625 = 4$
 - (e) $\log_a c = b$
- **3.** Without using a calculator, find:
 - (a) log 100
 - (b) log 1
 - (c) log 0.1
 - (d) log 0.001
 - (e) log₃ 81
- **4.** Use a calculator to find the following:
 - (a) log 41
 - (b) log 128
 - (c) log 7
 - (d) log 1330
 - (i) give your answers correct to 4 decimal places
 - (ii) write each number as a power of 10

5. Use a calculator to find the following:

- (a) ln 41
- (b) ln 128
- (c) ln 7
- (d) ln 1330

(i) give your answers correct to 4 decimal places

(ii) write each number as a power of e

6. Without using a calculator find:

- (a) $\ln e^2$
- (b) ln e³
- (c) ln 1
- (d) $\ln \left(\frac{1}{e}\right)$
- $(e) log_2 32$

7. Find the value of b if $\log_b 4 = \frac{1}{3}$

8. Given that $m = \log_p 6$ and $n = \log_p 4$, express the following in terms of m and/or n.

- (a) $\log_p 24$
- (b) $\log_p 2$
- (c) $\log_p 16$
- $(d)\log_p 1.5$
- (e) $\log_p 3$

Introduction to logarithms

Student name: _____ Score: _____

1. Write an equivalent logarithmic statement for:

(a)
$$2^6 = 64$$
 $\log_2 64 = 6$

(b)
$$7^3 = 343$$
 $\log_7 343 = 3$

(c)
$$3^4 = 81$$
 $\log_3 81 = 4$

(d)
$$10^{-2} = 0.01 \log_{10} 0.01 = -2$$

(e)
$$8^2 = 64$$
 $\log_8 64 = 2$

2. Write an equivalent exponential statement for:

(a)
$$\log_2 8 = 3$$
 $2^3 = 8$

(b)
$$\log 10\,000 = 4$$
 $10^4 = 10\,000$

(c)
$$\log_3 243 = 5$$
 $3^5 = 243$

(d)
$$\log_5 625 = 4$$
 $5^4 = 625$

(e)
$$\log_a c = b$$
 $a^b = c$

3. Without using a calculator, find:

(c)
$$\log 0.1$$
 - 1

(d)
$$\log 0.001 - 3$$

(e)
$$\log_3 81$$
 4

Use a calculator to find the following:

(*i*)
$$1.6128$$
 (*ii*) $41 = 10^{1.6128}$

(*ii*)
$$128 = 10^{2.1072}$$

(*ii*)
$$7 = 10^{0.8451}$$

(*ii*)
$$1330 = 10^{3.1239}$$

(i) give your answers correct to 4 decimal places

(ii) write each number as a power of 10

Use a calculator to find the following: 5.

- (a) ln 41
- (*i*) 3.7136
- (*ii*) $41 = e^{3.7136}$

- (b) ln 128
- (*i*) 4.8520
- (*ii*) $128 = e^{4.8520}$

- (c) ln 7
- (*i*) 1.9460
- (*ii*) $7 = e^{1.9460}$

- (d) ln 1330
- (*i*) 7.1929
- (*ii*) $1330 = e^{7.1929}$

(i) give your answers correct to 4 decimal places

(ii) write each number as a power of e

Without using a calculator find: **6.**

- (a) $\ln e^2$
- (b) $\ln e^3$
- 3
- (c) ln 1
- 0
- (d) $\ln \left(\frac{1}{e}\right)$
- (f) $log_2 32$ 5

Find the value of b if $\log_b 4 = \frac{1}{3}$ 7.

Given that $m = \log_p 6$ and $n = \log_p 4$, express the following in terms of m and/or n. 8.

- (f) $\log_p 24$
- m + n
- $(g)\log_p 2$
- $\frac{1}{2}n$
- $(h)\log_p 16$
- (i) $\log_p 1.5$ m-n
- (j) $\log_p 3$
- $m-\frac{1}{2}n$